Magnetic Leakage Fields and End Region Eddy Current Power Losses in Synchronous Generators

  • Datum:
  • Plats: Room 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala
  • Doktorand: Marcusson, Birger
  • Om avhandlingen
  • Arrangör: Elektricitetslära
  • Kontaktperson: Marcusson, Birger
  • Disputation


The conversion of mechanical energy to electrical energy is done mainly with synchronous generators. They are used in hydropower generators and nuclear plants that presently account for about 80% of the electric energy production in Sweden. Because of the dominating role of the synchronous generators, it is important to minimize the power losses for efficient use of natural resources and for the economies of the electric power companies and their customers. For a synchronous machine, power loss means undesired heat production. In electric machines, there are power losses due to windage, friction in bearings, resistance in windings, remagnetization of ferromagnetic materials, and induced voltages in windings, shields and parts that are conductive but ideally should be non-conductive.

The subject of this thesis is prediction of end region magnetic leakage fields in synchronous generators and the eddy current power losses they cause. The leakage fields also increase the hysteresis losses in the end regions. Magnetic flux that takes paths such that eddy current power losses increase in end regions of synchronous generators is considered to be leakage flux. Although only a small fraction of the total magnetic flux is end region leakage flux, it can cause hot spots, discoloration and reduce the service life of the insulation on the core laminations. If unattended, damaged insulation could lead to electric contact and eddy currents induced by the main flux between the outermost laminations. That gives further heating and deterioration of the insulation of laminations deeper into the core. In a severe case, the core can melt locally, cause a cavity, buckling and a short circuit of the main conductors. The whole stator may have to be replaced. However, the end region leakage flux primarily causes heating close to the main stator conductors which makes the damage possible to discover by visual inspection before it has become irrepairable.