Gastrointestinal Permeability and Motility in Inflammatory Bowel Disease

  • Datum:
  • Plats: Enghoffsalen, Ing 50 bv, Akademiska sjukhuset, Uppsala
  • Doktorand: Al-Saffar, Anas Kh.
  • Om avhandlingen
  • Arrangör: Gastroenterologi/hepatologi
  • Kontaktperson: Al-Saffar, Anas Kh.
  • Disputation


Synchronized motility, permeability and secretory (hormones and enzymes) events are integral to normal physiology. Smooth muscle syncytium operates with enteric nervous system (ENS) and endocrine signalling to accommodate, mix and control passage of ingested materials. The intestinal epithelial cells (IECs) drive digestion and absorption while repelling harmful compounds.

This thesis investigated GI barrier function (permeability, mucosal integrity), motility and hormonal patterns in inflammatory bowel disease (IBD) by: 1) assessing GI motility using a wireless motility capsule (WMC, SmartPill®) and video capsule endoscopy (VCE, Pillcam®), 2) investigation of intestinal fatty acid binding protein (I-FABP) as a biomarker of Crohn’s disease (CD) disease activity, 3) evaluation of small intestinal permeability in IBD, 4) investigating meal-related WMC motility and simultaneous hormonal (e.g., Ghrelin, GLP-1, GIP, PYY) patterns in IBD. Reference WMC motility values for transit times for gastric emptying, small bowel, orocecal, small+large bowel, colon and whole gut were established. Software-generated estimates and visually determined values were nearly identical. Compared with VCE estimates (represents fasting conditions), the WMC records longer GET and SBTT. Variations in intra-subject reproducibility must be considered in clinical investigations. This data was then used to investigate IBD patients. I-FABP was primarily expressed in the epithelium of the small bowel and to lesser extent also in the colon and stomach. Circulating I-FABP was elevated in active CD with a magnitude comparable to TNFα. I-FABP lowers and rises again in parallel with TNFα and HBI during infliximab treatment. I-FABP can be used as a jejunum and ileum selective prognostic biomarker for monitoring disease activity. Increased small intestine mucosal barrier permeability to lactulose in both CD and UC was found. Sucralose can serve a dual purpose in quantifying small and large intestinal permeability. Small intestinal hyper-permeability was not revealed as a transporter dependent nutrient (riboflavin) malabsorption. Using the WMC, consistent motility disturbances in IBD were limited, as were differences in pH. However, disturbances within many individuals were found. As part of the investigation, defects in gut peptide and metabolic hormone meal responses were found, typically higher plasma levels. No clear associations between hormones and motility were found. Effects on hunger/satiety signaling in IBD are anticipated.

The present thesis shows the utility of the WMC and gut barrier tests in monitoring IBD patients.